Speeding Up Non-Parametric Bootstrap Computations for Statistics Based on Sample Moments in Small/Moderate Sample Size Applications
نویسندگان
چکیده
In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson's sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling.
منابع مشابه
Optimal Non-Parametric Prediction Intervals for Order Statistics with Random Sample Size
In many experiments, such as biology and quality control problems, sample size cannot always be considered as a constant value. Therefore, the problem of predicting future data when the sample size is an integer-valued random variable can be an important issue. This paper describes the prediction problem of future order statistics based on upper and lower records. Two different cases for the ...
متن کاملEstimating misclassification error with small samples via bootstrap cross-validation
MOTIVATION Estimation of misclassification error has received increasing attention in clinical diagnosis and bioinformatics studies, especially in small sample studies with microarray data. Current error estimation methods are not satisfactory because they either have large variability (such as leave-one-out cross-validation) or large bias (such as resubstitution and leave-one-out bootstrap). W...
متن کاملFinite Sample Properties of the Dependent Bootstrap for Conditional Moment Models
This paper assesses the finite sample refinements of the block bootstrap and the Non-Parametric Bootstrap for conditional moment models. The study recononsiders inference in the generalized method of moments estimation of the consumption asset pricing model of Singleton (1986). These dependent bootstrap resampling schemes are proposed as an alternative to the asymptotic approximation in small s...
متن کاملThe Bootstrap Small Sample Properties
This report reviews several bootstrap methods with special emphasis on small sample properties. Only those bootstrap methods are covered which promise wide applicability. The small sample properties can be investigated analytically only in parametric bootstrap applications. Thus there is a strong emphasis on the latter although the bootstrap methods can be applied nonparametrically as well. The...
متن کاملThe comparison of parametric and nonparametric bootstrap methods for reference interval computation in small sample size groups
According to the IFCC, to determine the population-based reference interval (RI) of a test, 120 reference individuals are required. However, for some age groups such as newborns and preterm babies, it is difficult to obtain enough reference individuals. In this study, we consider both parametric and nonparametric bootstrap methods for estimating RIs and the associated confidence intervals (CIs)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015